Sympathetic and immune interactions during dynamic exercise. Mediation via a beta 2-adrenergic-dependent mechanism.

نویسندگان

  • D R Murray
  • M Irwin
  • C A Rearden
  • M Ziegler
  • H Motulsky
  • A S Maisel
چکیده

BACKGROUND The relation between the sympathetic nervous system and the immune system has not been fully defined. Recent investigations have suggested an adrenergically driven efflux of specific beta 2-receptor-rich lymphocyte subsets into the circulation with either exercise or infusion of exogenous catecholamines. METHODS AND RESULTS To determine whether acute sympathetic stimulation mediates immunoregulatory cell traffic and function via a beta 2-receptor mechanism, we exercised 20 healthy volunteers before and after 1 week of treatment with either the nonselective beta-antagonist propranolol or the beta 1-selective antagonist metoprolol. Before treatment, exhaustive exercise according to the Bruce protocol led to a marked lymphocytosis. Tsuppressor/cytotoxic (Ts/c) and natural killer cells, subtypes with the largest density of beta-receptors, showed the most pronounced increases after exercise, with less impressive elevations in T(helper) and B cells. With respect to function, exhaustive exercise led to a decrease in concanavalin A-stimulated IL-2 receptor expression and [3H]thymidine incorporation while enhancing natural killer cell activity. One week of propranolol therapy blunted the exercise-induced increases in circulating Ts/c and natural killer subpopulations as well as the previously observed alterations in cellular immune function. Treatment with the beta 1-selective antagonist metoprolol, however, did not impair the influence of exercise on any of the above parameters. CONCLUSIONS Acute sympathetic stimulation by exhaustive exercise leads to selective release of immunoregulatory cells into the circulation with subsequent alterations in cellular immune function, either secondary to subset changes or as a result of direct catecholamine effects on function. These changes are attenuated by propranolol but not metoprolol, suggesting a beta 2-mediated mechanism.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sympathetic and Immune Interactions During Dynamic Exercise Mediation Via a f-Adrenergic-Dependent Mechanism

Background. The relation between the sympathetic nervous system and the immune system has not been fully defined. Recent investigations have suggested an adrenergically driven efflux of specific P2-receptorrich lymphocyte subsets into the circulation with either exercise or infusion of exogenous catecholamines. Methods and Results. To determine whether acute sympathetic stimulation mediates imm...

متن کامل

Cardiac sympathetic nerve stimulation does not attenuate dynamic vagal control of heart rate via alpha-adrenergic mechanism.

Complex sympathovagal interactions govern heart rate (HR). Activation of the postjunctional beta-adrenergic receptors on the sinus nodal cells augments the HR response to vagal stimulation, whereas exogenous activation of the presynaptic alpha-adrenergic receptors on the vagal nerve terminals attenuates vagal control of HR. Whether the alpha-adrenergic mechanism associated with cardiac postgang...

متن کامل

Matching coronary blood flow to myocardial oxygen consumption.

At rest the myocardium extracts approximately 75% of the oxygen delivered by coronary blood flow. Thus there is little extraction reserve when myocardial oxygen consumption is augmented severalfold during exercise. There are local metabolic feedback and sympathetic feedforward control mechanisms that match coronary blood flow to myocardial oxygen consumption. Despite intensive research the loca...

متن کامل

Cardiac autonomic regulation during hypoxic exercise.

AUTONOMIC NERVOUS SYSTEM REGULATION of the heart and vasculature plays a key role in enabling the tight coupling between oxygen consumption of exercising skeletal muscles and oxygen delivery. The withdrawal of cardiac parasympathetic nerve activity and elevation in cardiac sympathetic nerve activity facilitate the exercise intensity-dependent increase in heart rate, ventricular contractility, s...

متن کامل

Cocaine stimulates the human cardiovascular system via a central mechanism of action.

BACKGROUND Cocaine is thought to stimulate the cardiovascular system by blocking peripheral norepinephrine reuptake. This study was designed to test the novel hypotheses that cocaine also stimulates the human cardiovascular system by (1) increasing central sympathetic outflow, or (2) decreasing parasympathetic control of heart rate. METHODS AND RESULTS In 14 healthy cocaine-naive humans, we m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Circulation

دوره 86 1  شماره 

صفحات  -

تاریخ انتشار 1992